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Abstract. We introduce a set of discrete modular transformationsT`, U` and S` in order to
study the relationships between the different phases of the Heisenberg ladders obtained with all
possible exchange coupling constants. For the two-legged ladder we show that the resonating
valence bond (RVB) phase is invariant under theS` transformation, while the Haldane phase is
invariant underU`. These two phases are related byT`. Moreover, there is a ‘mixed’ phase,
that is invariant underT`, and which underU` becomes the RVB phase, while underS` becomes
the Haldane phase. For odd ladders there exists only theT` transformation which, for strong
coupling, maps the effective antiferromagnetic spin1

2 chain onto the spin32 chain. Our work is
based on a combination of approximate methods such as bosonization, perturbation theory and
the nonlinear sigma model, adapted to the different regimes of coupling constants.

1. Introduction

In the last two years the concept of duality has played a crucial role in understanding
non-perturbative aspects of quantum field theory [1] and string theory [2]. Considering
the traditional links between particle physics and statistical mechanics or condensed matter
one may wonder whether these latter areas could benefit from the deeper understanding
gained in the former ones. In fact, duality ideas have been important in the historical
development of statistical mechanics, as shown by the Krammers–Wannier duality, order–
disorder transformations, etc [3]. In this paper we shall explore the existence of duality
symmetries in quantum spin systems defined on a lattice and more particularly on arrays of
coupled spin chains known as spin ladders [4].

Generally speaking a duality transformation is a mapping between two models, or the
same model with different parameters, which apparently have different physical properties,
but which become in a way equivalent under the transformation. Dual theories usually give
complementary descriptions of the same underlying phenomena.

Let us first establish what we mean by duality in a spin system. We shall consider the
Heisenberg Hamiltonian defined on thed-dimensional hypercubic lattice(d > 1),

H({Jµ}) =
∑
µ

∑
x

JµSx · Sx+µ (1)

where Sx is a spin S matrix acting at the positionx = (x1, . . . , xd), and µ1 =
(1, 0, . . . ,0), . . . ,µd = (0, 0, . . . ,1).

We shall define the dual of the Hamiltonian(1) as a HamiltonianHD = H({JDµ })
characterized by a new set of coupling constants{JDµ }, and such that the low-energy
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spectrum ofH andHD is in one-to-one correspondence. This implies that the free energy
and the ground-state (g.s.) energy will also be the same for both models.

In the classical limit where the spinS � 1, the g.s. of (1) is given by the classical
minima,

Sx = Sn
∏
µ

εx·µµ (2)

wheren is a 3-component unit vector andεµ = −signJµ. The energy of (2) is given by,

Eclass
0 = −S2

∑
µ

∑
x

|Jµ|. (3)

The signs of the exchange coupling constants,εµ, determine the type of order parameter
which characterizes the g.s. Thusεµ = 1 or −1 correspond to ferromagnetic (F ) or
antiferromagnetic (A) order in the directionµ of the lattice. Altogether there are 2d possible
classical vacua which we denote, ford = 1 and 2, by the sequences,

d = 1 : A,F

d = 2 : AA,AF, FA,FF.
(4)

The energies of the classical g.s. and the excitations are independent of the type of vacua
(4). All the classical Heisenberg models are equivalent. However the quantum corrections
drive them into very different quantum vacua. Only the pure ferromagnetic system (i.e.
Jµ < 0, ∀µ), survives the quantum fluctuations, but the non-ferromagnetic systems deeply
change their structure. The purpose of this paper is to show the relations existing between
the different vacua by means of a certain type of duality transformation.

At this point it is useful to make an analogy between two-dimensional (2D) spin systems
and fermions living on a 2D torus [5]. To define a fermion on a torus one has to specify
the boundary conditions along thea andb cycles. They can be periodic (P ) or antiperiodic
(A). This gives rise to four possible spin structures, labelled asAA,AP, PA and PP ,
which mix under the action of the modular transformationsT ,U andS as follows [5],

T : AA↔ AP,PA↔ PA,PP ↔ PP

U : AA↔ PA,AP ↔ AP,PP ↔ PP

S : AP ↔ PA,AA↔ AA,PP ↔ PP.

(5)

Observe that the spin structurePP is left invariant under the action of the modular group.
The fermion determinant with the boundary conditionsAA,AP, PA turns out to be given
by Jacobiϑ functions, which transform among themselves under the modular group as
described by (5). The fermion determinant forPP boundary conditions is zero due to the
existence of a zero mode.

In the case of 2D spin systems the role of the cyclesa and b is played by the
directionsµ1 = (1, 0) andµ2 = (0, 1). The analogue of the spin structure is given by
the (anti)ferromagnetic nature of the couplingJµ along the directionsµ1,2. Finally, a
modular transformation is a redefinition of the unit cell of the lattice. In the case of spin
ladders the above analogies can be collected in the following dictionary,

Torus Lattice↔ Spin Ladder

a − cycle↔ legs

b − cycle↔ rungs

Antiperiodic boundary condition (BC)↔ Antiferromagnetic Coupling

Periodic BC↔ Ferromagnetic Coupling

Modular Transformation↔ Bond Moving Transformation

(6)
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Figure 1. (a) Action of the transformationT` on the 2-leg ladder. (b) Action of the
transformationU` on the 2-leg ladder.

These correspondences have an analogue ind > 2. On a two-legged ladder (2-ladder),
we shall define three transformationsT`, U` and S` as follows. TheT` transformation
consists of the shift by one lattice spacing of one leg with respect to the other (see
figure 1(a)). TheU` transformation consists of the permutation of the two sites of the even
rungs, while leaving invariant the odd ones (see figure 1(b)). Finally theS` transformation
is defined by the equationS` = T`U`T`, and has the effect of converting all the vertical
bonds (rungs) into horizontal ones (legs), while half of the horizontal bonds become vertical
bonds and the other half become diagonal bonds of length

√
5. We remark thatT`, U` and

S` do not generate the standard modular group.
Using these definitions one can see that the classical vacuaAA,AF, FA andFF , get

mixed under the action ofT`, U`, S` in the form described by (5), with the replacement:
(anti)periodic ↔ (anti)ferromagnetic. The term ‘bond moving’ in (6) refers to a
transformation introduced by Migdal and Kadanoff in the study of the Ising model with
renormalization group methods [6]. As a fermion on a lattice with non-periodic BCs can be
regarded as essentially the same object, we conjecture that the 2-ladder, and more generally
the ladders with an even number of legs, with ‘magnetic structures’,AA,AF, FA, belong
to the same universality class and are related through dual transformations. This conjecture
implies in particular to the equivalence between the RVB state (AA couplings) and the
Haldane state (AF couplings) of the 2-ladder studied by various authors [7, 8], but it
also suggests new equivalences which have not been studied so far involving a ‘mixed’
state corresponding to theFA couplings. The use of the term duality applied to ladders
may lead to the erroneous conclusion that the magnetic structuresAA,AF andFA yield
different phases separated by well-defined phase boundaries. This is not the case for all
the statesAA,AF and FA belong indeed to the same quantum phase. The role of the
duality transformations is to show the equivalence between different ladder’s states from
a perspective closer in spirit to what is called nowadays duality in the realm of particle
physics, and which we illustrated above in the example of modular transformation of spin
structures in a torus.

We shall confine ourselves in this paper to the case of the spin1
2 ladder with two legs,
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Table 1.

T` U` S`

|a〉 −|a〉 |a〉 − |b〉 |b〉
|b〉 −|a〉 + |b〉 −|b〉 |a〉

trying to prove the above conjecture using perturbative and field theoretical techniques. At
the end we shall briefly consider the case of odd ladders.

Let us start with a toy ladder.

2. A 2× 2 cluster

The simplest 2-ladder has four spins coupled by the Hamiltonian,

H = Ja(S1 · S2+ S3 · S4)+ Jb(S1 · S4+ S3 · S2). (7)

The g.s. of the non-ferromagnetic Hamiltonians (i.e.εa,b 6= 1) is a singlet and therefore
can be written as the linear combination

|ψ〉 = τ |a〉 + |b〉
|a〉 = (12)(34) |b〉 = (14)(32)

(8)

where(ij) denotes the singlet valence-bond state constructed from the spin1
2’s located at

the sitesi andj . The transformationsS`, T` andU` of figures 1(a) and (b) become, for the
toy ladder, elementary transpositions,

T` : 3↔ 4, U` : 2↔ 3, S` : 2↔ 4. (9)

The action ofT`, U`, S` on the states (8) can be easily derived from (8) and (9). They are
given in table 1.

The ‘modular transformations’ induced on the ‘modular parameter’τ that follow from
table 1 are,

T` : τ →−(τ + 1), U` : τ →−τ/(τ + 1), S` : τ → 1/τ (10)

which are similar but not identical to the standard modular transformations of the torus.
The g.s. energy of (7) is,

E = − 1
2(Ja + Jb)−

√
J 2
a + J 2

b − JaJb (11)

corresponding to a value ofτ given by,

τ = −1+ Ja
Jb
− εb

√
1− Ja

Jb
+
(
Ja

Jb

)2

. (12)

The values ofτ obtained by changing the signs and strengths of the exchange coupling
constantsJa,b, cover the whole real axis as described in table 2.

Table 2.

(εa, εb) AF FF FA AA

τ (−∞,−2) (−2,− 1
2) (− 1

2 , 0) (0,∞)
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Table 3.

(Ja, Jb) State τ S` U` T`

AA RVB 1 RVB MIX HAL

AF HAL −2 MIX HAL RVB

FA MIX − 1
2 HAL RVB MIX

We have included the caseFF which corresponds to an excited state, since the g.s. is a
spin 2 multiplet. TheS` transformation (10) leaves invariant theAA and FF domains,
while interchanges the regionsAF and FA. S` duality is an exact symmetry of the
Hamiltonian (7). Actually,τ = 1 is a fixed point ofS`. TheT` andU` transformations are
approximate symmetries in the sense that the Hamiltonian (7) is not mapped into a similar
one with a redefinition ofJa,b. However, one can see thatτ = − 1

2 is a fixed point ofT`,
while theAA region τ > 1 is mapped underT` into theAF region τ < −2. Similarly
τ = −2 is a fixed point ofU`, while theAA region 0< τ < 1 is mapped underU` into
theFA region− 1

2 < τ < 0. All this shows that equations (5) hold with some caveats for
the 2× 2 cluster.

Within each domain,AA,AF andFA, we shall choose a representative state|τ 〉 with
the property of being invariant under one of the dual transformations. The stateτ = 1
can be called aRVB state since it describes the resonance between two vertical and
horizontal bonds. The stateτ = −2 is a Haldane-like state (HAL) in the sense that it
is obtained upon forming the spin 1 state along the rungs, which then couple to form a
singlet. Finallyτ = − 1

2 is a mixed state (MIX), corresponding to ferromagnetic chains
coupled antiferromagnetically. Moreover, each of the states|RVB〉, |HAL〉 and |MIX〉
gets transformed into another by the action ofT`, U`, S`.

The results are summarized in table 3.
For 2-ladders with a large number of rungs we can still make sense of the transformation

properties collected in table 3. In that case|RVB〉 denotes the g.s. of a ladder withAA
couplings, etc.

The rest of the paper will be devoted to showing the validity of table 3.

3. The weak-coupling regime:T` duality

If the two legs are weakly coupled (i.e.|Ja/Jb| � 1), theT` duality becomes a manifest
symmetry of the effective low-energy theory.

For Ja > 0 we can use bosonization techniques to show this fact. Indeed the effective
ladder Hamiltonian can be written in the bosonized model as [10],

H = HWZW + λ1(JL · JR + ĴL · ĴR)+ λ2(JL · ĴR + ĴL · JR)
+λ3 Tr(gσ)Tr(ĝσ)+ λ4 Tr g Tr ĝ (13)

whereg andJ (resp. ĝ and Ĵ) are the WZW field and current which bosonize the upper
(lower) spin chains of the ladder. The initial values of the different coupling constants
appearing in (13) are given by

λ1 < 0 λ2 = λ3 = Jb λ4 = 0. (14)

In the bosonized representation the translation of a chain by one site is equivalent to the
discrete symmetry [9],g → −g. Therefore the operatorT` is realized in the WZW model
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by the map,

T` : (g, ĝ)→ (−g, ĝ) (15)

implying thatT` is equivalent to the following change of couplings,

Ja
T`→ Ja

Jb
T`→−Jb.

(16)

Equation (16) illustrates the relationsT`|RVB〉 = |HAL〉 andT`|HAL〉 = |RVB〉, which
establish the equivalence between the RVB and Haldane states in the weak coupling limit.
White has observed [8] that the spins located in diagonal positions of the 2-ladder tend
to form effective spins 1, and using, what we call theT` transformation, he shows the
equivalence between the two phases. This is done in [8] by introducing diagonal couplings
in order to connect continously the|RVB〉 and |HAL〉 states. What we show in this paper
is that this connection can be also thought of as a discrete modular transformation by which
the properties of both models can be put in one-to-one correspondence.

If Ja < 0 both legs are in a ferromagnetic state with total spinStot = N/2. A weak
antiferromagnetic coupling,Jb > 0, splits this degeneracy giving a state which, to first
order in perturbation theory, is given by the singlet appearing in the Clebsch–Gordan
decompositionStot× Stot. Obviously, the latter state is invariant under a shift of one of the
legs. Thus the state|MIX〉, in the weak coupling regime, is invariant underT` duality,
according to table 3.

4. The strong coupling regime:U` duality

In the strong coupling regime (i.e.|Ja/Jb| � 1) the rung Hamiltonian yields the zero-order
approximation, while the leg Hamiltonian acts as a perturbation.

The rungs, in anAF ladder, are mostly in the spin 1 state which couple
antiferromagnetically along the leg direction, yielding effectively a Haldane chain. The
U` transformation, which simply permutes the two spins on the even rungs, leaves invariant
the corresponding Haldane state (i.e.U`|HAL〉 = |HAL〉).

Next we shall show using perturbation theory that theRVB and MIX states are
exchanged byU` duality.

For Jb >> 1 the rungs are in a singlet state. The g.s. energy computed to second order
in Ja is given by [11],

E0/N = −3

4
Jb − 3

8

J 2
a

Jb
. (17)

The first excited states form a band of spin 1 magnons,

|k〉 = 1√
N

N∑
x=1

eikx |x〉 (18)

where|x〉 denotes the state with singlets on all rungs except at the positionx where it is a
triplet. The dispersion relationω(k) of (18) is given, to second order inJa, by [11],

ω(k) = Jb + Jacosk − 1

4

J 2
a

Jb
(3− cos2k). (19)

The action ofU` on the magnons (18) is,

U`|k〉 = |k + π〉. (20)
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Table 4. Parameters of the 2-ladder with spinS.

AA AF FA

θ 0 4πS 0

g 1
S

(
1+ Jb

2Ja

)1/2
1
S

1
S

(
Jb

2|Ja |
)1/2

Hence the spectrum of theRVB and MIX states, up to second order inJa, are
exchanged underU` duality, as can be seen from the following identities satisfied by (17)
and (19),

E0(Ja, Jb) = E0(−Ja, Jb)
ω(k, Ja, Jb) = ω(k + π,−Ja, Jb).

(21)

5. The intermediate coupling regime:S` duality

When |Ja/Jb| ∼ 1, the effective theory can be obtained by mapping the ladder into the
nonlinear sigma model (NLSM) [12–14]. The values of the NLSM coupling constants are
given in table 4,

From these equations we obtain the curious relation,

g2
AA = g2

AF + g2
FA. (22)

S` duality corresponds to the permutation of vertical and horizontal bonds. Since on a
2-ladder there are twice as many horizontal bonds than vertical ones we expect a perfect
balance between both couplings whenever 2|Ja| = |Jb|. In this casegAF = gFA = gAA/

√
2.

The change ofθ by 4πS, when going fromFA to AF , does not affect the physics of the
problem and recalls what happens with duality transformation in field theories [1].

Extrapolating the NLSM map away the intermediate couplings we still find an agreement
with table 3. In the strong-coupling regime bothgAA andgFA go to the same asymptotical
value, which agrees with the fact that theU` operation maps one g.s. into the other. On the
other hand, the valuegAF = 1/S = 2 corresponds to the NSLM coupling of a spin chain
with spin 1.

In the weak coupling regime the NLSM map is not reliable, however, we see from
table 4, that in that limitgAA = gAF � gFA which agrees with the fact thatT` interchages
the RVB andHAL states. Of course in this limit we have two weakly coupled chains,
which should be treated with bosonization techniques.

Summarizing our results we can say that the Haldane and the mixed phases areS`-dual,
while the RVB phase is self-dual under anS` transformation.

6. Bond-moving dualities

What is the origin of the duality properties of ladders? In conformal field theory or string
theory duality is an expression of modular invariance. Something of this sort exists also
for spin systems. To show this we shall use a generalization of the Migdal–Kadanoff
transformations, which consist of the substitution of couplings between nearest-neighbour
sites by other nearest-neighbour or next-nearest-neighbour couplings [6]. This is achieved
by adding a potentialV to the HamiltonianH , so that the new HamiltonianH ′ = H + V
has a g.s. energy (and free energy)E′ smaller than the g.s. energyE of H , provided
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〈V 〉 = 0, where the vacuum expectation value is taken with respect to the g.s. ofH [6].
From figure 1(a)) we observe that theT`-transformation corresponds to the bond moving
potential,

VT` =
∑
n

(J ′bS1(n) · S2(n+ 1)− JbS1(n) · S2(n)). (23)

The Hamiltonian obtained by adding (23) to the ladder HamiltonianH(Ja, Jb), is a new
HamiltonianH(J ′a, J

′
b), whereJa,b are given by

J ′a = Ja
J ′b = Jb〈S1(n) · S2(n)〉/〈S1(n) · S2(n+ 1)〉. (24)

The expectation values in (24) are computed with respect to the g.s. ofH(Ja, Jb).
Equation (24) implies sign(J ′b) = −εaεb, which indeed corresponds to aT` transformation.

Similarly the bond-moving transformation which corresponds toU` gives,

J ′b = Jb
J ′a = Ja〈S1(n) · S1(n+ 1)〉/〈S1(n) · S2(n+ 1)〉. (25)

Finally the S`-tranformation can be derived from its definitionS` = T`U`T`. For all
these transformations, duality would amount to the equalityE(Ja, Jb) = E(J ′a, J ′b). The
variational principle underlying the Migdal–Kadanoff transformation only guarantees that
E(Ja, Jb) > E(J ′a, J

′
b), however, after the results obtained above using perturbative and field

theoretical methods, we have good reasons to believe that the replacement of inequalities
by equalities for the energies and free energies yields a good approximation. Further studies
are necessary to fully establish these facts.

7. Beyond the 2-ladder

Most of the results shown so far are generalizable to the case of even ladders with periodic
BCs along the rungs. TheT` transformation is given by the shift of one lattice space of
the even legs with respect to the odd legs, so that the rungs become zigzag lines across the
ladder. In fact, this definition applies to all types of ladders, even and odd, with different
BCs across the rungs. TheU` transformation consists of the shift by one lattice space of
the even rungs, so that the legs become zigzag lines along the ladder. The new coupling
constants, obtained upon these transformations, are also given by equations (24) and (25).

For odd ladders with open BCs along the rungs, there does not seem to be a sensible
definition of theU` and S` transformations, as we did above forT`. The odd ladders
of typeAA are in the same universality class as the spin1

2 antiferromagnetic Heisenberg
chain, whose g.s. we shall denote as|A1/2〉. On the other hand then` ladders (n`: odd)
with AF couplings are, at least in the strong-coupling regime, equivalent to spinnl/2
antiferromagnetic chain, whose g.s. we shall denote as|An`/2〉. The role ofT` is to exchange
theAA andAF couplings, which implies thatT`|A1/2〉 = |An`/2〉. The previous equivalence
can be established for every regime of couplings using, as we did for the 2-ladder, the
appropriate technique. Thus for intermediate couplings, where we can use the mapping
of the ladder into the NLSM [13], we obtain the parametersθAA = π and θAF = πn`,
which coincide modulo 2π . The odd ladders withFA andFF couplings are equivalent to
ferromagnetic Heisenberg chains with spins1

2 andn`/2 respectively. Their g.s. is invariant
underT`.

In summary we have seen that the even and odd ladders have quite different duality
properties which is of course a manifestation of the fact that they both belong to different
universality classes.
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